

ELECTRIC DOUUBLE LAYER CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER: DATE:

(客戶): (日期):2017-09-12

CATEGORY (品名) : ELECTRIC DOUBLE LAYER CAPACITORS

DESCRIPTION (型号) : DBL 5.5V0.47F (9.5x18x18)

VERSION (版本) : 01

Customer P/N : /

SUPPLIER : /

SUPPLIER					
PREPARED (拟定)	CHECKED (审核)				
李婷	刘渭清				

CUSTOMER					
APPROVAL (批准)	SIGNATURE (签名)				

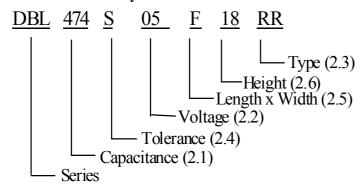
	SPECIFICATION DBL SERIES			CATION ERIES	ALTERN. R	ATION HIS ECORDS	TORY
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approv er

Issued-date: 2017-07-08	Name	Specification Sheet – DBL				
Version	01		Page	1		
STANDARD MANUAL						

ELECTRIC DOUBLE LAYER CAPACITORS SPECIFICATION DBL SERIES

CONTENTS

CONTENTS	
	Sheet
1. Application	3
2. Part Number System	3
3. Characteristics	4~10
3.1 Rated voltage & Surge voltage	
3.2 Capacitance (Tolerance)	
3.3 ESR	
3.4 Temperature characteristic	
3.5 Load life test	
3.6 Damp heat test	
3.7 Lead strength	
3.8 Resistance to vibration	
3.9 Solderability	
3.10 Resistance to soldering heat	
4. Product Dimensions	11
5. Notice item	12


Issued-date: 2017-07-08	Name	Specification Sheet – DBL				
Version	01		Page	2		
STANDARD MANUAL						

ELECTRIC DOUBLE LAYER CAPACITORS SPECIFICATION DBL SERIES

1. Application

The specification applies to electric double layer capacitors used in electronic equipment.

2. Part Number System

2.1 <u>Capacitance code</u>

Code	474
Capacitance (F)	0.47

2.2 Rated voltage code

Code	05
Voltage (W.V.)	5.5

2.3 <u>Type</u>

Code	RR
Type	Bulk

2.4 <u>Capacitance tolerance</u>

"H" stands for $-10\% \sim +50\%$ "S" stands for $-20\% \sim +50\%$

2.5 <u>Length x Width</u>

Code	F
Length x Widt	9.5x18

2.6 Height

18=18mm

Issued-date: 2017-07-08	Name	Specification Sheet – DBL				
Version	01		Page	3		
STANDARD MANUAL						

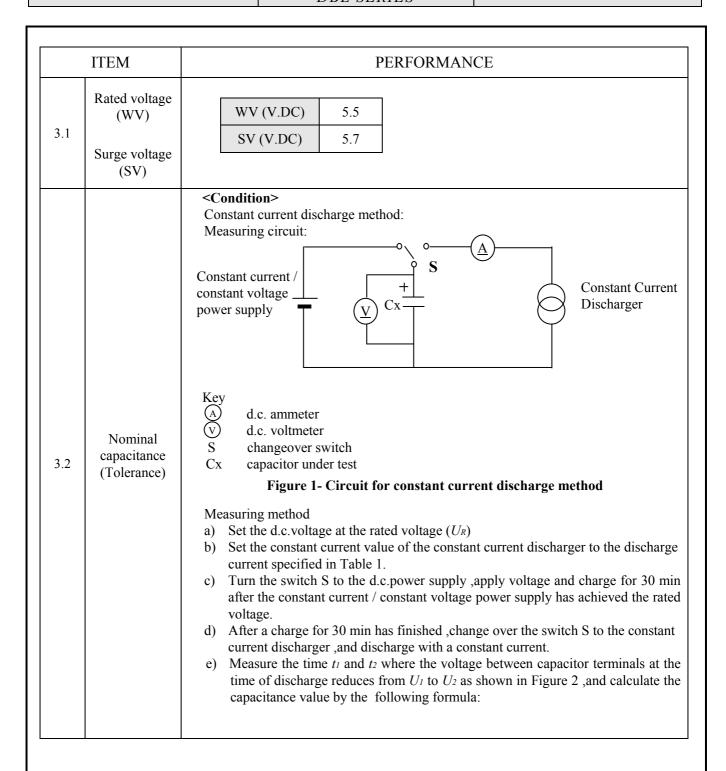
ELECTRIC DOUBLE LAYER CAPACITORS SPECIFICATION DBL SERIES

3. Characteristics

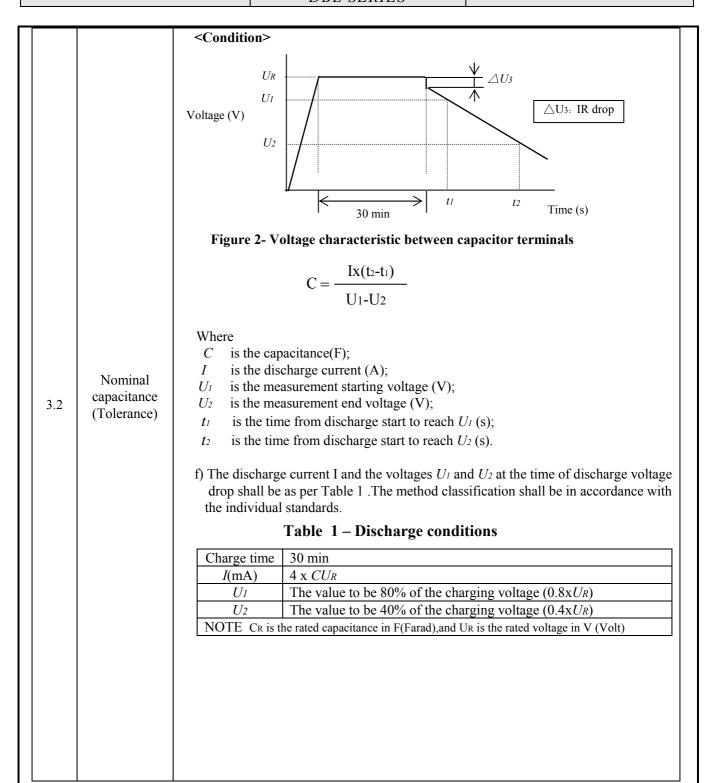
Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature: 15°C to 35°C Relative humidity : 25% to 75% Air Pressure : 86kPa to 106kPa


If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature: $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa


Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -40°C to 70°C.

Issued-date: 2017-07-08	Name	Specification Sheet – DBL				
Version	01		Page	4		
STANDARD MANUAL						

Issued-date: 2017-07-08	Name	Specification Sheet – DBL				
Version	01		Page	5		
STANDARD MANUAL						

Issued-date: 2017-07-08	Name	Specification Sheet – DBL				
Version	01		Page	6		
STANDARD MANUAL						

3.3	ESR	Measurir Measurir <criteri< th=""><th>ng frequency :1kHz ng temperature:20±2°C ng point :2mm max wire. ia> ess than the initial limit:</th><th>from the surface of</th><th>f a sealing resin on the lead</th></criteri<>	ng frequency :1kHz ng temperature:20±2°C ng point :2mm max wire. ia> ess than the initial limit:	from the surface of	f a sealing resin on the lead
3.4	Leakage current	2.The eld 3. Desist <criteria Less that I≤ 0.010</criteria 	ent temperature: $25^{\circ}\text{C} \pm 2$ ectrification time: 72H tance value of protective ra> n the initial limit($25^{\circ}\text{C} \pm 2$	esistor less than 1 Ω	?.
		<condition< td=""><td>on></td><td></td><td></td></condition<>	on>		
		STEP	Temperature($^{\circ}$ C)	Item	Characteristics
		1	20±2	Capacitance SESR	
				△C/C	Within ±30% of initial capacitance
		2	-40+3	ESR	Less than or equal to 4 times of the value of item 3.3
3.5	Temperature	3	Keep at 15 to 35°C for 15 minutes or more		
	characteristic	4	70+2	△C/C	Within ±30% of initial capacitance
		4	70±2	ESR	The limit specified in 3.3
			40°C/ ESR 20°C: ESR ratio 20°C: Capacitance change		

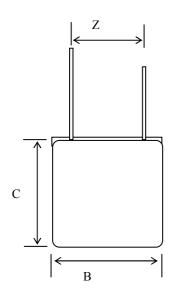
Issued-date: 2017-07-08	Name	Specification Sheet – DBL				
Version	01		Page	7		
STANDARD MANUAL						

			at a temperature of 70 ± 2 °C with rated aours .The result should meet the following table:
		<criteria></criteria>	
		Item	Performance
		Capacitance Change	Within ±30% of initial capacitance
3.6	Load life	ESR	Less than or equal to 4 times of the value of item 3.3
3.0	test	Appearance	No visible damage and no leakage of electrolyte
		-	exposed for 240±48 hours in an atmosphere of 90~95%RH stic change shall meet the following requirement.
		Item	Performance
	Damp	Capacitance Change	Within ±30% of initial capacitance
	4 .	ESR	I
3.7	heat test	ESR	Less than or equal to 4 times of the value of item 3.3

Issued-date: 2017-07-08	Name	Specification Sheet – DBL				
Version	01		Page	8		
STANDARD MANUAL						

		a) Lead pull strength						
		A static load force shall be applied to the terminal in the axial direction and act in a direction away from the body for 10 ± 1 s.						
		Lead wire diameter (n						
		d ≤0.5	5.0					
		b) Lead bending						
			a vertical position and the weight specified in the d and then the capacitor is slowly rotated 90 ⁰ to a					
3.8	Lead strength		urned to a vertical position thus completing bends					
3.0	Lead strength	for 2~3 seconds.						
		The additional bends are made to Lead wire diameter (mn						
		d ≤0.5	2.5					
			shall meet the following value after a) or b) test.					
			Performance					
		Capacitance Change V	Within ±30% of initial capacitance					
			No visible damage Legible marking and no					
		1. In the second	eakage of electrolyte					
3.9	Resistance to vibration	Frequency: 10 to 55 Hz (1minute int Amplitude: 0.75mm(Total excursion Direction: X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hour The capacitors are supported as the f	rs)					
		Fig	g2					
		capacitance when the value is measu	Il not show drastic change compared to the initial ared within 30 minutes. Prior to the completion of the within $\pm 10\%$ compared to the initial value the					

Issued-date: 2017-07-08	Name	Specification Sheet – DBL				
Version	01		Page	9		
STANDARD MANUAL						


	T	
3.10	Solderability	The capacitor shall be tested under the following conditions: Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 2.0±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin) Performance: At least 75% of the dipped portion of the terminal shall be covered with new solder.
3.11	Resistance to soldering heat	A) Solder bath method Lead terminals of a capacitor are placed on the heat isolation board with thickness of 1.6±0.5mm. It will dip into the flux of isopropylaehol solution of colophony. Then it will be immersed at the surface of the solder with the following condition: Solder : Sn-3Ag-0.5Cu Soldering temperature : 260±5°C Immersing time : 5±0.5s Heat protector: t=1.6mm glass -epoxy board B) Soldering iron method Bit temperature : 350±10°C Application time : 3.5±0.5 s Heat protector: t=1.6mm glass -epoxy board For both methods, after the capacitor at thermal stability, the following items shall be measured: Item Performance Capacitance Change Within±10% of initial capacitance Appearance No visible damage legible marking and no leakage of electrolyte


Issued-date: 2017-07-08	Name	Specification Sheet – DBL				
Version	01		Page	10		
STANDARD MANUAL						

ELECTRIC DOUBLE LAYER CAPACITORS SPECIFICATION DBL SERIES

4. Product Dimensions (plastic crust and colophony irrigate install)

Unit: mm

Note:Longer lead is positive

A	В	C	d	Z
±1.0	±1.0	±1.0	± 0.05	±0.50
9.5	18	18	0.50	11.8

Issued-date: 2017-07-08	Name	Specification Sheet – DBL				
Version	01		Page	11		
STANDARD MANUAL						

_	TA T		• 4
•		OTICA	e item

- (1) The capacitor has fixed polarity.
- (2) The capacitor should be used under rated voltage.
- (3) The capacitor should not be used in the charge and discharge circuit with high frequency.
- (4) The ambient temperature affects the super capacitor life.
- (5) Voltage reduction $\Delta V=IR$ will happen at the moment of discharge.
- (6) The capacitor cannot be stored on the place with humidity over 85%RH or place with toxic gas.
- (7) The capacitor should stored in the environment within $-30^{\circ}\text{C} \sim 50^{\circ}\text{C}$ temperature and less than 60% relative humidity.
- (8) If the capacitor is applied on the double-side PCB, the connection should not be around the place on which the super capacitor can contact.
- (9) Don't twist capacitor or make it slanting after installing.
- (10) Need avoid over heat on the capacitor during soldering (The temperature should be 260°C with the time less than 5s during soldering on 1.6mm printed PCB.)
- (11) There is voltage balance problem between each capacitor unit during series connection between super capacitor.

Issued-date: 2017-07-08	Name	Specification Sheet – DBL					
Version	01		Page	12			
STANDARD MANUAL							